E a Probabilidade e a Estatística, hein?

quarta-feira, 29 junho, 2016 at 2:49 pm 2 comentários

Na faculdade eu sempre olhei muito enviesado para a Probabilidade e a Estatística, mas isso devia-se, claro, à ignorância em relação ao pensamento estatístico. Como Leonard Mlodinow nos ensina no excelente “O Andar do Bêbado: como o acaso determina nossas vidas“, e eu cito: “a mente humana foi construída para identificar uma causa definida para cada acontecimento, podendo assim ter bastante dificuldade em aceitar a influência de fatores aleatórios ou não relacionados”. É isso! Temos extrema dificuldade em entender o pensamento aleatório, probabilístico e, por consequência, o estatístico. Mas, como escrito no mesmo livro (citando o economista Armen Alchian), “os processos aleatórios são fundamentais na natureza, e onipresentes em nossa vida cotidiana; e ainda assim, a maioria das pessoas, não os compreende”.

Mas, é óbvio que isso precisa mudar. Nós, Cientistas da Computação e amantes da tecnologia e da Tecnologia da Informação em geral, não somos “a maioria das pessoas”. Precisamos mudar a nossa lógica determinística, afinal, a ciência inteira (e a Computação não fica de fora) é dominada inteiramente pela Estatística e pelo pensamento estocástico.

“O desenho de nossas vidas, como a chama da vela, é continuamente conduzido em novas direções por diversos eventos aleatórios que, juntamente com nossas reações a eles, determinam nosso destino. Como resultado, a vida é ao mesmo tempo difícil de prever e difícil de interpretar” – Leonard Mlodinow em “O Andar do Bêbado: como o acaso determina nossas vidas”

Portanto, começamos esse estudo, muitas vezes com resultados contra-intuitivos. Mas temos uma ferramenta de grande valia: o computador e as linguagens de programação. Portanto, vamos começar com um experimento básico: a probabilidade da moeda lançada.

Para isso, fiz um script em Python (2.7.11) para simular o lançamento de uma moeda e, em seguida, computar as probabilidades dos lançamentos. Os resultados são interessantes. Quanto mais o número de lançamentos aumenta mais as frequências aproximam-se do número previsto (50% para cada uma das faces).

Aqui está o código:

# -*- coding: UTF-8 -*-
"""
Função:
    Exemplo de lançamento de moeda
Autor:
    Professor Ed - Data: 29/05/2016 -
Observações:  ?
"""
def gera_matriz_lancamentos(matriz, tamanho):
    import random
    matriz_faces = []
    print 'Gerando...'
    for x in range(tamanho):
        num = random.randint(1,2) #1 = cara, 2 = coroa
        matriz.append (num)

        if num==1:
            matriz_faces.append('Cara')
        else:
            matriz_faces.append('Coroa')

    print matriz_faces

def calcula_probabilidades(matriz, tamanho):
    soma_cara = 0
    soma_coroa = 0

    for i in range(len(matriz)):
        if matriz[i]==1:
            soma_cara = soma_cara+1
        elif matriz[i]==2:
            soma_coroa = soma_coroa + 1

    probabilidade_cara = float(soma_cara)/float(tamanho)*100
    probabilidade_coroa = float(soma_coroa)/float(tamanho)*100    

    print 'Foram lancadas ' + str(soma_cara) + ' caras e ' + str(soma_coroa) + ' coroas'

    probabilidades = []
    probabilidades.append(probabilidade_cara)
    probabilidades.append(probabilidade_coroa)    

    return probabilidades

matriz=[]
tamanho = int(raw_input('Digite o tamanho da matriz de lancamentos: '))
gera_matriz_lancamentos(matriz, tamanho)
#print 'Um para cara e 2 para coroa'
#print matriz
vetor_probabilidades = []
vetor_probabilidades = calcula_probabilidades(matriz, tamanho)
print 'As probabilidades sao: %f%% e %f%%' % (vetor_probabilidades[0], vetor_probabilidades[1])

Nem sempre, como os números gerados pelo computador são (pseudo)aleatórios (falaremos disto depois), as frequências são próximas a 50% (variando bastante entre as execuções do programa), mas, em geral, sempre que a quantidade de lançamentos é imensa (acima de 10.000), as probabilidades aproximam-se do limite esperado.

Lembrando, sempre, que se lançarmos uma moeda um milhão de vezes não deveríamos esperar um placar exato (50% caras e 50% coroas). A teoria das probabilidades nos fornece uma medida do tamanho da diferença (chamada de erro) que pode existir neste experimento de um processo aleatório. Se ma moeda for lançada, digamos, N vezes, haverá um distanciamento (erro) de aproximadamente 1/2 N “caras”, este erro, de fato, pode ser para um lado ou para o outro. Ou seja, espera-se que, em “moedas honestas“, o erro seja da ordem da raiz quadrada de N.

Assim, digamos que de cada 1.000.000 lançamentos de uma moeda honesta, o número de caras se encontrará, provavelmente entre 499.000 e 501.000 (já que 1.000 é a raiz quadrada de N). Para moedas viciadas, espera-se que o erro seja consistentemente maior que a raiz quadrada de N.

probabilidade-moedaUm exemplo da execução do programa com duas instâncias exatamente iguais, mas com valores gerados diferentes. (mais ou menos como acontece na realidade).

Abaixo, um exemplo de uma instância com 100.000 lançamentos provando que as frequências, de fato, aproximam-se das probabilidades previstas (inclusive se considerado o erro):

probabilidade-moeda-100mil-lancamentos

Segundo a Lei dos Grandes Números, a média aritmética dos resultados da realização da mesma experiência repetidas vezes tende a se aproximar do valor esperado à medida que mais tentativas se sucederem. E, claro, se todos os eventos tiverem igual probabilidade o valor esperado é a média aritmética. (Lembrando, claro, que o valor em si, não pode ser “esperado” no sentido geral, o que leva à uma falácia). Ou seja, quanto mais tentativas são realizadas, mais a probabilidade da média aritmética dos resultados observados se aproximam da probabilidade real.

A Probabilidade é descrita por todos, alunos, professores e estudantes, como difícil. Em minha opinião, ela dá a impressão de ser difícil porque muitas vezes, desafia nosso senso comum (que, normalmente, tende sempre à falácia do apostador, ou de Monte Carlo), ainda mais quando dispomos do conhecimento da lei dos grandes números. Estratégias como “o dobro ou nada” nadam de braçadas no inconsciente coletivo com esta falácia.

O teorema de Bayes (que é um corolário da Lei da Probabilidade Total) explica direitinho o porque da falácia do apostador ser, bem, …, uma falácia. Sendo a moeda honesta, os resultados em diferentes lançamentos são estatisticamente independentes e a probabilidade de ter cara em um único lançamento é exatamente 12.

É isso aí. Nos próximos posts vamos falar um pouco mais sobre os significados e como calcular essas probabilidades, sempre tentando um enfoque prático com a ajuda dessa ferramenta magnífica que é o computador!
Até!

P.S.: Assim que meu repositório for clonado certinho (tive uns problemas com o Git local) eu coloco o link para o programa prontinho no Github.
Pronto! Já apanhei resolvi o problema do Git e você pode baixar o arquivo-fonte clicando aqui.
P.S.1: Acabei não resistindo e fazendo o teste para 1.000.000 de lançamentos. O resultado está aqui embaixo. Confira:

probabilidade-moeda-1000000-lancamentos

Entry filed under: Estatística, Estrutura de Dados, matemática, Probabilidade, Programação. Tags: , , , , , , , , , , , .

Trechos do livro “Rápido e devagar: duas formas de pensar” de Daniel Kahneman E o algoritmo, hein? Afinal, que “bicho” é esse que domina o mundo?

2 Comentários Add your own

  • 1. Francisco  |  quinta-feira, 30 junho, 2016 às 1:03 am

    Probabilidade é algo muito difícil, professor. Mas, vendo assim, o negócio na prática até que ajuda.

    Curtir

    Responder
    • 2. edkallenn  |  terça-feira, 8 novembro, 2016 às 12:05 pm

      Na verdade, ela não é difícil. É um pouco contra-intuitiva e por isso a achamos difícil.
      Abs.

      Curtir

      Responder

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

Trackback this post  |  Subscribe to the comments via RSS Feed


Follow Computador de papel: o conteúdo da forma on WordPress.com

Feeds

direto do Twitter

O Computador de Papel

O computador de papel nada mais é do que a tentativa de "humanizar" o computador, trazê-lo para a fantasia lúdica da realidade, fazê-lo compreendido pelos milhares que o usam, mas não o entendem. Nasceu de minhas viagens intelectuais defronte da tela de fósforo um dia em que ele retrucou-me: decifra-me ou te devoro. Para não ser devorado, ousei decifrá-lo. É também onde posto minhas aulas, meus trabalhos, minhas impressões de um pouco de nada sobre coisa nenhuma. É o local onde falo das minhas paixões, entre elas, a música, o cinema, a TI e a ciência. É um espaço de discussão sobre a realidade do computador, sua influência, seus avanços, o exercício do óbvio que é mostrar a sua importância no e para o mundo. Tem o estilo de seu criador, acelerado, com um tom sempre professoral, tresloucado, por vezes verborrágico, insano, nevrálgico, sem arroubos literários, atônito e contemplativo diante da realidade, apaixonado, livre, feito para mostrar que a TI é antes de tudo, feita por gente!

Estatísticas do blog

  • 118,174 cliques e contando...

Agenda de posts

junho 2016
S T Q Q S S D
« mar   nov »
 12345
6789101112
13141516171819
20212223242526
27282930  

%d blogueiros gostam disto: